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Agents trained with Reinforcement Learning

The current paradigm (which seems likely to stay in some capacity):

• Reward function specified or learned from human preferences.

• Reinforcement learning on that reward function.

• Deploy model.

• (Perhaps repeat if needed.)

We want to understand:

• What kinds of properties of environments, reward-learning

procedures, and reinforcement learners lead to situations where the

above setup can lead to catastrophe (if at all).
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Main Result

Theorem (Informal)
When the environment dynamics are such that instrumental

states are easy to return to and true reward is sparse, then even a

slight amount of conflation of instrumental goals and terminal

goals can lead to significantly misaligned behavior.

2



Examples

Figure 1: Montezuma’s Revenge
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https://www.youtube.com/watch?v=_sFp1ffKIc8&list=PLehfUY5AEKX-g-QNM7FsxRHgiTOCl-1hv&index=2


Examples

Figure 2: Private Eye
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https://www.youtube.com/watch?v=FR6fsGDdiFY&list=PLehfUY5AEKX-g-QNM7FsxRHgiTOCl-1hv&index=3


Examples

Hypothetical examples:

• AI Therapist

• AI Shutdown Evasion (different mechanism from standard

instrumental convergence mechanism).
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Problem Setup

• Let (S,A,P, s0) be an MDP where S is a finite state space, A is a

finite action space, P is a tensor where Pass′ represents the

probability of transitioning from s to s ′ with action a, and s0 is the

initial state.

• A policy π : S → ∆A is a function mapping each state to a

probability distribution over actions. Each policy π induces a Markov

chain with a transition matrix that we denote by Pπ.

• We assume the human’s preferences over policies is determined by a

“true” reward function r . In particular, we assume

π1 ⪰ π2

if and only if

Eπ1

[
1

T

T−1∑
t=0

r(St)

]
≥ Eπ2

[
1

T

T−1∑
t=0

r(St)

]
.

6



Problem Setup

• Let (S,A,P, s0) be an MDP where S is a finite state space, A is a

finite action space, P is a tensor where Pass′ represents the

probability of transitioning from s to s ′ with action a, and s0 is the

initial state.

• A policy π : S → ∆A is a function mapping each state to a

probability distribution over actions. Each policy π induces a Markov

chain with a transition matrix that we denote by Pπ.

• We assume the human’s preferences over policies is determined by a

“true” reward function r . In particular, we assume

π1 ⪰ π2

if and only if

Eπ1

[
1

T

T−1∑
t=0

r(St)

]
≥ Eπ2

[
1

T

T−1∑
t=0

r(St)

]
.

6



Problem Setup

• Let (S,A,P, s0) be an MDP where S is a finite state space, A is a

finite action space, P is a tensor where Pass′ represents the

probability of transitioning from s to s ′ with action a, and s0 is the

initial state.

• A policy π : S → ∆A is a function mapping each state to a

probability distribution over actions. Each policy π induces a Markov

chain with a transition matrix that we denote by Pπ.

• We assume the human’s preferences over policies is determined by a

“true” reward function r . In particular, we assume

π1 ⪰ π2

if and only if

Eπ1

[
1

T

T−1∑
t=0

r(St)

]
≥ Eπ2

[
1

T

T−1∑
t=0

r(St)

]
.

6



Problem Setup (Continued)

• Through reward learning or another procedure we produce a reward

function proxy r̂ .

• We then train a policy π̂ using r̂ . We say the policy is misaligned if

π̂ performs poorly with respect to the true reward function r

(“Reward Hacking”).
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Canonical Example

Theorem (Informal)
When the environment dynamics are such that instrumental

states are easy to return to and true reward is sparse, then even a

slight amount of conflation of instrumental goals and terminal

goals can lead to significantly misaligned behavior.

Figure 3: Stay action Figure 4: Move action
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Theorem (Informal)
When the environment dynamics are such that instrumental

states are easy to return to and true reward is sparse, then even a

slight amount of conflation of instrumental goals and terminal

goals can lead to significantly misaligned behavior.

Definition (Conflation of Reward and Value)
A function r̂ is said to conflate r and V∗ if there exists c > 0, k ∈ ℜ and

β ∈ (0, 1] such that

cr̂ + k = (1− β)r + βV∗.

For average reward (no discounting), we have

V∗(s) = lim
γ↑1

Eπ∗

[ ∞∑
t=0

γt(r(St)− r∗)
∣∣∣S0 = s

]
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Formal Theorem

Theorem (Slight conflation induces severe misalignment)
Consider the canonical example. Let r̂ be a reward function that

depends on M and ϵ. Assume there exists β∗ ∈ (0, 1] such that,

for all M and ϵ ∈ (0, 1), r̂ conflates r and V∗ with at least degree

β∗. Then, for sufficiently large M and small ϵ ∈ (0, 1), if

π̂ ∈ argmaxπ r̂π then rπ̂ = −1.
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Geometric Interpretation
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Figure 5: Visualization of feasible region, reward and value for different values

of ϵ and M. The feasible region is determined by ϵ: smaller values lead to a

smaller region. The reward vector is determined by M: larger values lead to a

more upright reward vector. The value vector V∗ is determined by both ϵ and

M. Smaller ϵ and larger M both lead to V∗ pointing more to the right.
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• Thank you!

• We are building a team at Stanford. If you are interested in working

with us or funding this kind of work, let us know!
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